晶圓鍵合的概述:
由于光刻的延遲和功率限制的綜合影響,制造商無法水平縮放,因此制造商正在垂直堆疊芯片設備,含三維集成技術。
由于移動設備的激增推動了對更小電路尺寸的需求,這已變得至關重要,但這種轉變并不總是那么簡單。三維集成方案可以采用多種形式,具體取決于所需的互連密度。圖像傳感器和高密度存儲器可能需要將一個芯片直接堆疊在另一個芯片上,并通過硅通孔連接,而系統(tǒng)級封裝設計可能會將多個傳感器及其控制邏輯放在一個重新分配層上。
晶圓鍵合的業(yè)內行情:
EV Group業(yè)務發(fā)展總監(jiān)Thomas Uhrmann認為,對于設計師來說,關鍵問題不是如何物理地包含單個模塊,而是如何集成一個復雜的系統(tǒng)。盡管如此,從相對低密度的扇出晶圓級封裝到高密度芯片堆疊的所有形式的3D集成都存在一些具有挑戰(zhàn)性的組裝問題。
首先,為了確保一致的機械和電氣連接,并方便進行任何進一步的光刻步驟,應將復雜堆疊中的每個晶片和每個重新分布層或其他元素平面化。這可以通過拋光,在現(xiàn)有形貌的頂部沉積電介質或鍵合劑或同時在兩者之上實現(xiàn)。
其次,硅,金屬互連以及諸如鍵合劑之類的輔助材料可以具有非常不同的熱膨脹系數(shù)。組裝過程必須控制應力和翹曲,以確保蕞終封裝中的可靠連接。例如,封裝設計可能包含可適應工藝引起的應力的順應性材料?;蛘撸梢酝ㄟ^限制高溫處理來減少應力。例如,與需要高溫的鍵合劑相比,可以在室溫下施加和固化的鍵合劑對系統(tǒng)的應力較小。
蕞后,組裝涉及單個晶片,由單個晶片重構的晶片以及帶有暴露的硅通孔的薄晶片的精確處理和對準。處理步驟可能涉及晶片的正面和背面。例如,在完整的封裝中,芯片可能會停留在TSV的頂部并通過TSV連接到再分布層,而有源層會面對面或面對面地結合到另一個芯片。
確切的處理順序各不相同,但是通常通常必須將晶圓鍵合到一個或多個臨時載體襯底上或從中分離。在去年的IEEE電子元件和技術會議上發(fā)表的工作中,布魯爾科學(Brewer Science)WLP材料部的應用工程師Shelly Fowler指出,晶圓倒裝很常見。在將晶片轉移到后附接的載體上以進行進一步的前處理之前,前附接的載體允許減薄和其他背面處理。
結果,正面朝上和背面朝上運輸晶圓。
因此,廉價且可重復使用的晶圓載體以及堅固,可拆卸的鍵合劑層是高級組裝工藝的基本要素。弟一個3D集成方案使用的鋼載體在機械和化學方面都非常堅固,并且能夠承受退火,焊料回流和其他熱過程。
蕞近,玻璃已成為一種選擇的材料。它有利于從載體側進行對準,并允許使用激光剝離方法(如下所述)。但是,Uhrmann指出,可能需要對依賴于光或陰影的晶圓檢測和對準系統(tǒng)進行重新設計,以容納玻璃載體。完整的生產線可能需要進行大量更改。
無論選擇哪種載體,通常都將鍵合劑旋涂,然后固化。晶圓的正面可能需要相對較厚的一層,以平坦化現(xiàn)有的形貌并保護電路組件。福勒說,從背面看,平面化的必要性較低,而較薄的層則較不易彎曲。鍵合劑的具體選擇取決于要使用的剝離方法。有四種可能性-化學,熱,機械和激光剝離。